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This is joint work with Francesc Perera.

In this talk we’ll:

• define a Riesz type interpolation property for the Cuntz

semigroup W (A) and prove that it is satisfied in the case

when A has the ideal property.

• find characterizations of the ideal property in terms of

the Cuntz semigroup (and several more in the stable,

purely infinite case).

• define ”comparison ” and prove comparison results for

classes of C∗-alg. A with the ideal property (including

situations when A is an AH alg. with the ideal property).
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Elliott’s Program:

Classify sep., nuclear C∗-alg. by discrete invariants in-

cluding K-theory.

Counterexamples (in the simple case):

• Rørdam

• Toms : used the Cuntz semigroup to distinguish sim-

ple, nuclear C∗-alg. which cannot be distinguished by

the conventional Elliott invariant.

The Cuntz semigroup W(.):

• a, b ∈ A+ : a - b if ∃{xn} ⊂ A such that a = lim
n→∞

xnbx
∗
n.

(Cuntz)

• a, b ∈M∞(A)+: a - b if a - b in Mn(A) for some n such

that a, b ∈Mn(A).
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• a, b ∈M∞(A)+ : a ∼ b if a - b and b - a (a and b Cuntz

equivalent.)

• W (A), the Cuntz semigroup of A, is defined by:

W (A) := M∞(A)+/ ∼= {〈a〉 : a ∈M∞(A)+}

• W (A) = a positively ordered abelian semigroup when

equipped with the relations:

〈a〉+ 〈b〉 = 〈a⊕ b〉, 〈a〉 ≤ 〈b〉 ⇔ a - b, a, b ∈M∞(A)+ .

(Coward-Elliott-Ivanescu, Crelle’s Journal 2008):

Cu(A) ∼= W (A⊗K) :

• closed under suprema of increasing sequences

Cu(.):

• sequentially continuous
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Conjecture (Toms-Winter, 2007):

Let A = C∗-alg. + unital + sep. + simple + non-

elementary + nuclear . T.F.A.E.:

1. A = finite nuclear dimension;

2. A = Z-stable (i.e., A ∼= A⊗Z);

3. A = strict comparison of positive elements (i.e.,

whenever a, b ∈ A+ satisfy dτ(a) < dτ(b), ∀τ ∈ T (A),

then a - b).

Important:

Extend ”comparison” to the non-simple case (e.g., to

the ideal property case) and prove appropriate ”compar-

ison” results.

4



Definition (Kirchberg-Rørdam):

A C∗-alg. A is said to be purely infinite if:

(1) A has no characters (or, equivalently, no non-zero

abelian quotients), and

(2) ∀a, b ∈ A+ such that a ∈ AbA⇒ ∃{xn} ⊂ A such that

a = lim
n→∞

x∗nbxn (i.e., a - b).

Remark:

The study of purely infinite C∗-alg. was motivated by

Kirchberg’s classification of the sep., nuclear C∗-alg.

that tensorially absorb the Cuntz algebra O∞ up to sta-

ble isomorphism by an ideal related KK-theory.
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Definition:

A C∗-alg. A is said to be an AH algebra, if A is the

inductive limit C∗-alg. of:

A1
φ1,2−→ A2

φ2,3−→ A3
φ3,4−→ · · · φn−1,n−→ An

φn,n+1−→ · · ·

with An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i, where the local

spectra Xn,i = finite, connected CW complexes, tn, [n, i] ∈
N and each Pn,i ∈ P(M[n,i](C(Xn,i))).
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The ideal property

Definition:

A C∗-alg. A is said to have the ideal property (i.p.) if

each (closed, two-sided) ideal of A is generated (as an

ideal) by its projections.

Some remarks and results:

• A = simple + unital ⇒ A = i.p.

• RR(A) = 0⇒ A = i.p.

• (Sierakowski): Let (A,G, α) be a C∗-dynamical system,

where G = discrete amenable group and the action of

G on Â is free. Then A = i.p. ⇒ C∗(G,A, α) = i.p.

• (P.-Phillips): Let α : G → Aut(A) be an action of a

finite group on A with the Rokhlin property. Then A =

i.p. ⇒ C∗(G,A, α) = i.p.

• (Cuntz-Echterhoff-Li): If R is a ring of integers in a

number field ⇒ the semigroup C∗-alg. C∗r(R o R×) =

i.p. (+ purely infinite + RR(C∗r(R oR×)) 6= 0)
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• (K. Stevens): Classification of a certain class of AI

alg. + i.p.

• (P.): Classification of the AH alg. + i.p. + s.d.g., up

to a shape equivalence.

• (P.): Several characterizations of the i.p. for an arbi-

trary AH alg.

• (P.): If A = AH alg. + i.p. + s.d.g. Then:

(1) sr(A) = 1;

(2) K0(A) = Riesz group + weakly unperforated (in the

sense of Elliott).

• (Gong-Jiang-Li-P.): If A = AH alg. + i.p. + no

dim. growth. ⇒ A can be rewritten as an AH alg. with

(special) local spectra of dim ≤ 3.
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• (P.-Rørdam, J.F.A. 2000): i.p. ⊗ i.p. 6= i.p. (even in

the sep. case). If at least one of the ”factors” is exact,

then we have ”equality”.

• (P.-Rørdam, Crelle’s Journal 2007): Let A = C∗-alg.

+ sep. + purely infinite. T.F.A.E.:

(1) A = i.p.;

(2) Prim(A) = a basis of compact-open sets.

• (P.-Rørdam, Crelle’s Journal 2007): Let A = C∗-alg.

+ sep. T.F.A.E.:

(1) A⊗O2 = i.p.;

(2) RR(A⊗O2) = 0;

(3) Prim(A) = a basis of compact-open sets.
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A RIESZ TYPE INTERPOLATION PROPERTY

FOR W(.) AND THE IDEAL PROPERTY

Definition (P.-Perera):

Let A = C∗-alg. We say that the Cuntz semigroup

W (A) has the weak Riesz interpolation by projections

property if:

∀ai, bi ∈ M∞(A)+ such that 〈ai〉 ≤ 〈bj〉 (in W (A)), 1 ≤
i, j ≤ 2 and ∀ε > 0, ∃p ∈ P(M∞(A)) and m ∈ N such that

we have (in W (A)):

〈(ai − ε)+〉 ≤ 〈p〉 ≤ m〈bj〉,1 ≤ i, j ≤ 2.

Theorem (P.-Perera):

Let A = C∗-alg. + i.p. Then, W (A) = weak Riesz

interpolation by projections property.

Lemma (P.-Perera):

Let A = C∗-alg., let I be an ideal of A that is generated

(as an ideal) by P(I) and let a ∈ A+.

(i) If a ∈ I, then ∀ε > 0, ∃p ∈ P(M∞(A)) such that

(a − ε)+ - p, where p = a finite direct sum of

projections of I.

(ii) ∀q ∈ P(AaA), ∃n ∈ N such that q - a⊗ 1n.
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Proof of the Theorem. Let ai, bi ∈ M∞(A)+ such that

〈ai〉 ≤ 〈bj〉, 1 ≤ i, j ≤ 2. We may suppose that ai, bi ∈
A+,1 ≤ i ≤ 2. Let ε > 0. Note that since ai ≤ a1 + a2,

1 ≤ i ≤ 2, a result of Rørdam implies that:

〈ai〉 ≤ 〈a1 + a2〉

for i = 1,2. Then, by another result of Rørdam, for our

ε > 0, ∃δ > 0 such that:

〈(ai − ε)+〉 ≤ 〈(c− δ)+〉,1 ≤ i ≤ 2 , (1)

where c := a1 +a2. Since 〈ai〉 ≤ 〈bj〉,1 ≤ i, j ≤ 2, we have

that c ∈ AbjA,1 ≤ j ≤ 2, i.e. c ∈ I := Ab1A∩Ab2A. Note

that since A= i.p. and I = ideal of A⇒ I is generated

(as an ideal) by P(I). Then, by the above Lemma ⇒ for

our δ > 0, ∃p ∈ P(M∞(A)) such that p = a finite direct

sum of projections of I and ∃m ∈ N such that:

〈(c− δ)+〉 ≤ 〈p〉 ≤ m〈bj〉,1 ≤ j ≤ 2 (2)

Finally, (1) and (2) imply that:

〈(ai − ε)+〉 ≤ 〈p〉 ≤ m〈bj〉,1 ≤ i, j ≤ 2 ,

which ends the proof.

11



CHARACTERIZATION OF THE IDEAL PROP-

ERTY IN TERMS OF W(.)

Theorem (P.-Perera):

Let A = C∗-alg. T.F.A.E.:

(i) A = i.p.;

(ii) ∀ai, bi ∈ A+ such that 〈ai〉 ≤ 〈bj〉, 1 ≤ i, j ≤ 2 and

∀ε > 0, ∃p ∈ P(M∞(A)) and ∃m ∈ N such that

〈(ai − ε)+〉 ≤ 〈p〉 ≤ m〈bj〉, 1 ≤ i, j ≤ 2 and p = a

finite direct sum of projections of A;

(iii) ∀a ∈ A+ and ∀ε > 0, ∃p ∈ P(M∞(A)) and m ∈ N
such that 〈(a − ε)+〉 ≤ 〈p〉 ≤ m〈a〉 and p = a finite

direct sum of projections of A.

12



A SPECIAL CASE

Theorem (P.-Perera):

Let A = C∗-alg. + purely infinite + stable. T.F.A.E.:

(i) A = i.p.;

(ii) ∀a ∈ A+, ∃ {pn} ⊂ P(A) such that 〈a〉 = sup
n∈N
〈pn〉 (in

W (A));

(iii) ∀a ∈ A+, ∃{qn} ⊂ P(A) such that {〈qn〉} is increas-

ing in W (A) and 〈a〉 = sup
n∈N
〈qn〉 (in W (A));

(iv) ∀a ∈ A+, we have that AaA = ∪n≥1In, where {In} is

an increasing sequence of ideals of A and each In

is generated (as an ideal) by a single projection.

13



Proposition (P.-Perera):

Let A = C∗-alg. + purely infinite + i.p. and let

a ∈ A+ ⇒ ∃{pn} ⊂ P(M∞(A)) such that {〈pn〉} is an in-

creasing sequence in W (A) and 〈a〉 = sup
n∈N
〈pn〉 (in W (A)).

Remark (P.-Perera):

(i) Note that if A = C∗-alg. + purely infinite ⇒ W (A)

= Riesz interpolation property. The same conclu-

sion holds for the semigroup V (A) consisting of

the Murray-von Neumann equivalence classes [p]

of projections in M∞(A).

Indeed, let ai, bi ∈ M∞(A)+ be such that 〈ai〉 ≤
〈bj〉,1 ≤ i, j ≤ 2 (in W (A)). We may assume that

ai, bi ∈ A+,1 ≤ i ≤ 2. Then, for all i, j:

〈ai〉 ≤ 〈a1 + a2〉 ≤ 〈a1〉+ 〈a2〉 ≤ 2〈bj〉 ≤ 〈bj〉 .

(∀ non-zero positive element of a purely infinite

C∗-alg. is properly infinite).

(ii) For A = C∗-alg., denote by:

Wpi(A) := {〈a〉 ∈W (A) | a = 0 or prop. inf. in M∞(A)} .

Then the same argument as in (i) shows that Wpi(A)

= subsemigroup of W (A) with Riesz interpolation.

With this language, a theorem of Kirchberg-Rørdam

can be rephrased by saying that:

• A = purely infinite ⇔ W (A) = Wpi(A).
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COMPARISON OF POSITIVE ELEMENTS AND

THE IDEAL PROPERTY

• A dimension function on a C∗-alg. A is an additive or-

der preserving function d : W (A)→ [0,∞]. We can also

regard d as a function M∞(A)+ → [0,∞] that respects

the rules d(a⊕ b) = d(a) + d(b) and a - b ⇒ d(a) ≤ d(b)

for all a, b ∈M∞(A)+.

• Define DF (A) := the set of all dimension functions

on a C∗-alg. A.

• A dimension function d on A is said to be lower semi-

continuous if d(a) = sup
ε>0

d((a− ε)+) for all a ∈M∞(A)+.

• Let A = unital C∗-alg. A (normalized) quasitrace on

A ia a function τ : A→ C satisfying:

(i) τ(1) = 1;

(ii) 0 ≤ τ(xx∗) = τ(x∗x), for all x ∈ A;

(iii) τ(a+ ib) = τ(a) + iτ(b), for all a, b ∈ Asa;

(iv) τ is linear on abelian sub-C∗-alg. of A;

(v) τ extends to a function from Mn(A) to C satisfying

(i)-(iv).

• Define QT (A) := the set of all (normalized) qua-

sitraces on A. This notion was introduced by Blackadar-

Handelman.
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• Given τ ∈ QT (A) one may define a map dτ : M∞(A)+ →
[0,∞] by:

dτ(a) = lim
n→∞

τ(a1/n)

Note that in fact dτ takes only real values: dτ(M∞(A)+) ⊆
[0,∞).

• Blackadar and Handelman showed that dτ = lower

semicontinuous dimension function on A. Note that for

all p ∈ P(M∞(A)) we have that dτ(p) = τ(p).

Definition A (P.-Perera):

A unital C∗-alg. A such that QT (A) 6= ∅ is said to have

weak strict comparison if it has the property that a - b

whenever a, b ∈M∞(A)+ satisfy the inequality:

d(a) < d(b), ∀d ∈ E ∪ {f ∈ DF (A) r E : f(b) = 1}

where E := {dτ : τ ∈ QT (A)}.

Definition (P.-Perera):

A unital C∗-alg. A such that QT (A) 6= ∅ is said to

have strict comparison of projections if p - q whenever

p, q ∈ P(M∞(A)) satisfy the inequality:

τ(p) < τ(q), ∀τ ∈ QT (A).
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Theorem A (P.-Perera):

Let A = C∗-alg. + unital + i.p. + strict comparison of

projections + finitely many extremal quasitraces. Let

a, b ∈M∞(A)+ such that:

dτ(a) < dτ(b), ∀τ ∈ QT (A) .

Then ∀ε > 0, ∃m ∈ N such that:

(a− ε)+ - b⊗ 1m.

Remark (Rørdam):

Let a, b ∈ A+. T.F.A.E.:

(1) ∀ε > 0, ∃m ∈ N such that (a− ε)+ - b⊗ 1m;

(2) a ∈ AbA.

Corollary A (P.-Perera):

Let A = unital + AH alg. + i.p. + finitely many

extremal tracial states. Let a, b ∈M∞(A)+ such that:

dτ(a) < dτ(b), ∀τ ∈ T (A).

Then ∀ε > 0, ∃m ∈ N such that:

(a− ε)+ - b⊗ 1m.
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Definition:

A positive ordered abelian semigroup W (in particular,

the Cuntz semigroup of a C∗-algebra) is said to be

almost unperforated if ∀x, y ∈ W and ∀m,n ∈ N with

nx ≤ my and n > m⇒ x ≤ y.

Theorem B (P.-Perera):

Let A = C∗-alg. + unital + i.p. + strict comparison of

projections + finitely many extremal quasitraces. As-

sume that W (A) = almost unperforated. Then A =

weak strict comparison.

Theorem C (P.-Perera):

Let A = AH alg. + unital + i.p. + finitely many

extremal tracial states. Assume that W (A) = almost

unperforated. Then A = weak strict comparison.
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Theorem D (P.-Perera):

Let A = AH alg. + unital + i.p. + finitely many

extremal tracial states and let B = unital + simple +

infinite dimensional AH alg. + no dimension growth

+ a unique tracial state. Then A ⊗ B = weak strict

comparison.

Proof. Observe first that since A, B = i.p. and A (or

B) = exact, it follows that A ⊗ B = i.p. (use, e.g., a

result of P.-Rørdam). On the other hand, by a result of

Toms-Winter, B = Z-stable, that is B ∼= B ⊗ Z, where

Z is the Jiang-Su algebra. Hence the unital AH alg.

with the ideal property A ⊗ B is Z-stable, i.e. A ⊗ B ∼=
(A⊗B)⊗Z, and then a result of Rørdam ⇒W (A⊗B)

= almost unperforated. Note that if T (B) = {σ} ⇒
T (A ⊗ B) = {τ ⊗ σ : τ ∈ T (A)} and since A = finitely

many extremal tracial states ⇒ A ⊗ B = finitely many

extremal tracial states. Now, the fact that A⊗B = weak

strict comparison follows from the previous Theorem.
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Remark (P.-Perera):

We may say that a unital C∗-alg. A with QT (A) 6= ∅
has almost weak strict comparison if A satisfies all the

conditions in the definition of weak strict comparison

(Definition A), with the only difference that the condi-

tion:

(∗) d(a) < d(b), ∀d ∈ E

is replaced by the new condition:

(∗∗) ∃ε0 > 0 s.t. d(a) < d((b− ε0)+), ∀d ∈ E ,

with E as in Definition A above (of course, we still

request that d(a) < d(b), ∀d ∈ {f ∈ DF (A) r E : f(b) =

1}).

In the proof of Theorem A we showed, in particular, that

in the case when a unital C∗-alg. A = finitely many ex-

tremal quasitraces, then (∗) ⇒ (∗∗). Therefore, in this

case, if A = almost weak strict comparison ⇒ A = weak

strict comparison. Note that if we drop the condition

that the C∗-alg. A = finitely many extremal quasitraces

(tracial states), the conclusions of Theorem A and of

Corollary A remain true if we replace in their hypothe-

ses condition (∗) by condition (∗∗) as above. Also, it is

easy to see that, if in Theorems B, C and D we drop the

condition that A = finitely many extremal quasitraces

(tracial states) and the condition that B = unique tra-

cial state (in Theorem D), then they remain true if we

replace in their conclusions “weak strict comparison” by

“almost weak strict comparison”.
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